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Abstract--Consideration is given to gas flow in channels of circular, annular and plane cross-sections. A 
mathematical model is suggested which uses an integral approach for describing momentum and energy 
transfer in a turbulent boundary layer. It is assumed that dynamic and thermal boundary layers start to 

develop on the channel walls simultaneously and subsequently converge. 

1. INTRODUCTION 

FOR THE most part, the heat transfer sections of power 
plants are fabricated in the form of channels of differ- 
ent cross-sections. In general, the mode of  gas flow in 
such channels is turbulent. In such cases, the friction 
and heat transfer coefficients are traditionally cal- 
culated along two lines----experimentally and theo- 
retically. In engineering calculations, the available 
dimensionless relations for complex unsteady-state 
boundary conditions [1, 2] are widely applied, 
especially when the case of interest coincides with the 
conditions for which some experimental relation was 
obtained. It should be kept in mind, however, that 
dimensionless relations obtained for analogous con- 
ditions of flow, but by different authors, may differ. 

As regards the range of the results being obtained, 
the theoretical approach is more attractive. However, 
numerical solution of  turbulent boundary layer heat 
transfer equations in Navier-Stokes' or Prandtrs 
forms requires unjustifiably great machine time expen- 
ditures in many practically important cases. More- 
over, the employment of  a considerable number of  
empirical constants to find correlations between 
turbulence characteristics restricts the potentialities of 
this approach. 

At the present time, for solving a wide class of heat 
transfer problems, the prediction methods are being 
developed and applied which realize the integral 
momentum, heat and mass conservation equations 
in Karman's form. While retaining the appropriate 
accuracy, the integral methods require less machine 
time. Based on the integral method suggested in ref. 
[3], the present paper investigates the problem of fric- 
tion and heat transfer of  a turbulent gas flow in chan- 
nels of circular, annular and plane cross-sections. In 
the general case, heat transfer in annular and plane 
channels can be asymmetric. It is assumed that ther- 
mal and dynamic boundary layers start to develop 
simultaneously from the channel inlet on both channel 
walls and that they subsequently converge. 
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2. MATHEMATICAL MODEL 

The equations of heat transfer and friction in a 
turbulent boundary layer in Prandtl's form are for- 
mulated as follows : 

OV x OV. ~V x OP 1 
P -~-~ + , v ~  +,v.-=-_ ~y = - e~ + ~ = (n..~) 

vy 

(2) 

(3h* + Vx ah* ~h* ~P 1 
P ' ~  P ~ x  +PVy-~y = at H~ Oy (H~q)" 

(3) 

The boundary conditions are 

t = 0 :  Vx01= Vi,; h * = h ~ ;  P0~ = P i , ;  

2 dh* 
y = 0: . . . .  q,t ; h* = h,i ; 

C p e y  

pz,=(pv,).2; v x = 0 ;  

). dh* 
y = S : Cp dy =qw2; h * = h , 2 ;  

p V , = ( p V , ) w 2 ;  Vx=O;  (4) 

~, = 1 in the annular channel, ~, = 0 in the plane 
channel. 

For the initial section of  the channel in the region 
of  inviscid flow, 6~ ~< y ~< S-~2,  equations (2) and 
(3) yield 

av.~ av~ ae 
p , ~ + p o v ~  ax -- ~x (5) 

eh* dh* dP 
P* --dT + "c V'~ -~--xx = ~-[ " (6) 

Density is defined by the state equation 
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b, 
(pV,)./p,v= 

Cp specific heat at constant pressure 
Cf friction factor, 2~w/p=V~ 
C~ specific heat at constant volume 
H form parameter, ~*/6"* 
H '  form parameter, 6*'/6** 
H;, form parameter, 6h /~h 
H3 Lam6 coefficient,/~ + y  cos 
h total thermodynamic enthalpy 
h* recovery enthalpy, h + r(V~/2) 
h* stagnation enthalpy, h + V~/2 
Ah~ difference of enthalpies, h*-hw 
Ah difference of enthalpies, h* - hw 
I, ~6o' H~ dy 
12 ?o: n~ dy 
h ~o ~ dy 
K ratio of specific heats, Cp/C~ 
L characteristic dimension 
P pressure 
Pr Prandtl number 
q heat flux density 
R radius 
r recovery coefficient 
ReL Reynolds number, Lp= Vdlz o i 
Res Reynolds number, Sp~ V,/l~o i 
Re** Reynolds number, ~**p~V,/l~o~ 
Re** Reynolds number, 6**p=V,/#o~ 
S channel width 
St Stanton number, q,/p=V.(hw-h*) 
T temperature 
t time 

NOMENCLATURE 

permeability parameter of permittivity, V 
X 

Y 

velocity 
longitudinal coordinate 
coordinate normal to the wall. 

Greek symbols 
ct heat transfer coefficient 
6 boundary layer thickness 
~** dimensionless momentum thickness, 

6"'16 
o~ * dimensionless energy loss thickness, 

6~*16 
0 dimensionless enthalpy, 

(h* -hw)l (h*-h. )  
2 thermal conductivity 

dimensionless coordinate, y/6 
p density 

dimensionless density, p/p= 
z friction stress 
f dimensionless friction stress, ~/z. 
co dimensionless velocity, VJV=. 

Subscripts 
e boundary layer edge 
f mean-mass temperature 
h thermal boundary layer 
in value at t = 0 
inj injection 
w wall 
0 standard boundary layer 
01 channel entrance 
1,2 channel wall. 

P = p R T = ~ p  h * -  . (7) 

After simple transformations, the system of equations 
(I)-(7) gives the integral momentum, continuity and 
energy equations. 

2.1. A channel with plane or annular cross-section 
The system of integral equations for the initial sec- 

tion of the channel is formulated for the first wall in 
the form of a momentum equation 

L 0 ORe** 
-~ -~(H'~ Re**)+ a.~ 

FI, ReL L Re**(H'~ - H t ) l o v  , 
+ v: 

~[ ,, .eLiovo Re** OH[t 
+ Re**(H, + I)-- LH], J a.~ + H]----~ a.~ 

'RELY'( ) 
2 7 = bwl+ Re, (8) LpcV~H31 ag 

and an energy equation 

O (H~,H~ILRe*~*AhI'~ I= ReL OP 

,, Re,lOb: 
I Rel**(H,-Hi)+ -- '~--J ~t 

7 I ~ 7 Rehl H~l aRe*l* + H 3 j A h , ~  +_  +Hi Re**H~l 

Ii~eL.)Oh* **Oh,, 
-- ~ m Rehl Og 

+Ahl Re ** ~H[I = (bwl+Stl)AhliH]= Rez; (9) Og 

for the second wall in the form of a momentum 
equation 
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L O ORES* 
V, Ot (n'2 Re**) + 

[I2 ReL L Rel*(H'2-H2).]OV~ 
- LH~2 v-------~ + ~ d ot 

1 [ ** 12 ReL_]OV, Re~* OHm2 
+ ~,I_R~2 (n2+l)  + - -  

- ~ d 7 ~ -  ~;~, ~f 

I2ReL OP r = - ~ )  
Lp, V, H32 Of bw2 + Re~ (10) 

an energy equation 

O {H'h2H)2L Re** Ah2) 12 Rez OP 

L [- 12 Rez] Oh* 
- V, [n~2 ~et*(t-r~- U,) + - z - - J  

ORES* ( 
-FH'~2Ah2-- ~ + Re~{' H~2+H 2 Re** H~j2 

I2 ReL~ Oh* Re** Ohm2 
/ T ~  - n "  ~' T~ 

0H~32 
+Ah2 Re**--~x = (bw2+ St2)Ahi2H;'~2 ReL (11) 

and a continuity equation 

O [-L Re** H~t(H'~ - H i )  L Re** H52(H'2-H2) 
L vo + 

13 ReL] ORe** ORe** 
+-W-~ J - U i w ' i - T ~  -n~n~2 of 

I3 Ret. [ 1 V,'~ O V, I3 ReL OP 
+ - Z - ~ + r . ) ~  + ~e of 

13 ReL Oh, Re~ Ol 3 Hr~t Re** O Hi 
Lh~ Of t" ~ -  Of t~x 

O H 2  - u"** OH31-H2 **0H32 
-H~2 Re~* ~ x  --l-lt "~l Of Re2 - ~ -  

13 Re~ OK 
7 = (H31bwt +Ha2bw,) Rez. (12) L K ( K -  1) Of 

For the channel section after the convergence of the 
boundary layers, equations (8), (10), and (12) retain 
their forms. Equation (3) is reduced to 

~ (H  ~, H~l Re~*L Ak I . )  

Ot k V, J 

+ O ( n ~ , m ,  Re*eLAh2~ 13 Re~ OP 
Ot\ ~ ) + p~V~ Ot 

- [H~I Re**(H'~ - H,) + H~2 Re**(H'~ - H2) 
L 

13 ReL'] L dh~* ..  dRe*l* + 

.~ ._ ~Re** ( 
+H~2Ah2---~" + Reht H~t+HI Re** H~, 

13 ReL~ dh.* 
+ Re*~' H~z + H,. Re** H~2- ~ ]--~f 

ah~t dhw2 
+ H~ I Re** ~ + H~ 2 Re,~ Of 

-Re*l* Ahl--77-. --Reh*~' /xn2 ;--:_ 
(TX CX 

= (bwl +Stt)Ahtj ReL H~l 

+ (bw2 + St2)Ah t2 ReL H~ 2. (13) 

Since the region of inviscid flow is absent, equations 
(5) and (6) are replaced by the following geometric 
relations : 

fit = 3hi; 62 = 3h2 (14) 

6~+62 = S (15) 

which are transformed to 

1 ORe** I dRe*l* 
- # ,  o---T-+8,1, ~f 

Re~i* 06"~,* Re** eS** 
Off ~ 8.~ (16) 

1 ORe** 1 ORe** 

Re*~ OoV~ * Re~* 06~* 
=~-,.2 0f ~*-' ef (17) 

Res OP Res Oh* Re** dO~'* 
P Of F h~- Of = - ~ * '  O.¢: 

Re** ~o ~** Res OS Res OK 2 t, 2 

+ ~g~---~-f + s of r ( X - l ) o f  

Here, the following notations were adopted : 

Y 6 * = ~ : ( l - ~ o g ) ( l + - - ~ c o s f l ) d y ,  

tS** = ~O1(1 --tO) 1 + ~ 

t~*' = I :  ' (1 --o9) (1 + k cos fl) dY; 

; ( y )  3 * * =  /~o~(l--0) l+_----cosfl dy; 
- -  gw 
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fo' ( Ycos#)dy. ,W= p(l-O) l_+~ 

2.2..4 circular channel 
The system of integral equations is formulated as 

follows : 

momentum equation 

v,LO , - - ~  ~(H Re**) L Re**(H -H) 

6 '\]OV, ORe** 

+ -~ [Re**(H + l ) -  Re" 6 ( l -  2--~e.) ] 

O V, ReL 6 [ "~ OP 
× l -  

4 b,+--~ ReL; (18) 

energy equation 

O (H~AhL Re** ~ _ ~ [Re,,(H,_ H) 
o,\ V. / 

2s.gj ot T~ 

+[Re**+HRe**--ReL~(I-2-~'-w) ] 

Oh* . **Oh,, Ah Re** OR,, 
x - ~  - l(eh - ~  4 R, 0$ 

Rez 6 . (,- 2R,] Ot - (b,,+St)Ah~ ReL; (19) 

continuity equation 

NO [L Re**(H'v, -H) b ReL2v, R'*IJ-H ORe**o____if_ 

,ec R,.[' l V,'~OV, ReL R,, OP 
2L---T of 

Ret. R. Oh* Re** OH_ ReLR. OK 
2Lh, Of 02 K(K- I)L Off 

{tt Re** ) O~ 
- -  k. ~ Ret. -~- = b,, Ret.. (20) 

For the initial section equations (18)-(20) are sup- 
plemented with equations (5) and (6). Over the length 
after the convergence of the boundary layers equa- 
tions (5) and (6) are substituted by the following 
geometric conditions: 

= R , ;  6 h = R .  (21) 

which are reduced to the form 

1 ORe** { 1 V,'~Ov, 

ReR OP Re, Oh* R e * *  O~** 

P O.~, t-h, O.~-~ ~-~ 0.¢, 

ReL OR, ReR OK 
+ L -  O~ K(K-I) 0f (22) 

1 ORe** R e , ( l  + V~OVc 

ReR OP 

P O.~ 
+ ReR Oh* R e * *  Oo~'* * 

h, Of = ~ ,2  O.~ 

ReL OR. ReR OK 
+ L 0.~ K(K-I )&~"  (23) 

Here 

R,,pc Vo Rert = - -  
/.tot 

2.3. Relative laws of friction and heat tran~sfer 
Integration of the system of momentum, continuity 

and energy equations becomes possible after the 
establishment of the relationship between the fric- 
tion, Cr, and heat transfer, St, coefficients and cor- 
respondingly between the Reynolds numbers, Re** 
and Re**. Moreover, the determination of the integral 
characteristics H, H', and HI, requires the knowledge 
of the velocity, co, and enthalpy, 0, profiles. Following 
ref. [3], the coefficients Cr and St will be represented 
as  

Cf = ~FCr0 (24) 

St = ~h Sto. (25) 

The relative laws of friction • and heat transfer ~ ,  
in equations (24) and (25) contain all the information 
about the difference of the studied boundary layer 
with disturbing factors (non-isothermicity, pressure 
gradient, permeability, etc.) from the 'standard' 
boundary layer for which 

Cr0 = 2(2.5 In Re**+3.8) -2 (26) 

Sto = (2.5 In Re**+3.8) -2 Pr -°'75. (27) 

A system of equations will now be derived for the 
unsteady turbulent flow with regard, in the general 
case, for non-isothermicity, permeability, compres- 
sibility and adverse pressure gradient. Represent- 
ing the flow shear in Prandtl's form, it is possible 
to write 

q = - ~ . (29) 

The characteristic turbulence scale I in equation (28) 
is defined as 
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l =  xyx/~0. (30) 

It follows from equations (28) and (30) that 
Here 

. ,.~ 2 (Oto'~-' 
= px'g Z o ~  \ - ~ - / •  (31) 

Integrating equation (31) over the boundary layer 
thickness, the dimensionless velocity profile can be 
determined 

to = ~cX/\  2 .]Jo ~ / \ ~  fo,/ ~ ' (32) 

Taking into account that ~ = 1 when to = i, the rela- 
tive friction law can be obtained from equation (32) 

u?__ 

fo' J 
Equations (28) and (29) can yield 

~to vo (h . -h: )  O0 
q PrT . . . .  (34) 

Integration of equation (34) over the boundary layer 
thickness gives the dimensionless enthalpy profile 

Here 
~h (~ ['~ d(0/z') '~Ah~ Cro 

O= T P r T _  --J0 t o - ~ d C ) - ~  2Sto. (35) 

With the use of the conditions ~ = 1 and 0 = 1 on the 
edge of the boundary layer, equation (35) gives the 
relative law of heat transfer 

~F Ah 2Sto 
~"  = ( .  f '  d(OlO k Ah, Go (36) 

PrT ~,' --Jo to--d--~- d~ ) 
The density distribution in equations (32) and (33) is 
determined from the relation 

1 
-= = ~.1 --A~O-- (¢* -- l)to 2 (37) 
P 

where 

h. 4" h*, q ' = E ;  = T =  Aq, = q, - q,*. 

The distr ibution of  f low shear and heat f lux density 
over the boundary layer thickness is approximated by 
the relations which were suggested in ref. [4] and 
which have the following form for the conditions con- 
sidered : 

- -  = exp [f~,~(1-O] (38) 
fo 

O - -  = exp [0~,~(l - O]. (39) 
0o 

Equations (38) and (39) can yield 

O -z = exp [(0~, , - - f ' )~(1-- ,~)] .  (40) "C 

d? d O (41) 

As is seen from the above relations, the distributions 
of 17 and 0 depend on the magnitude and sign of 
the quantities ~, and 0", the governing equations for 
which are derived as follows. For the conditions on 
the wall equations (2) and (3) give 

OP ~z z.. 
(p Vy)w , . = - ?.--~ + ~ ,.. + ~ (42/ 

Oh* dh*l OP ~ -t- q~ 
p-~-f  + ( p V y ) . ~ y  . = ~-~ cy ~ R-~" (43) 

Whence, with equations (5) and (6) taken into account 

6 
f" = A + Re,.j +_ R~ (44) 

6 
0" = zh + Rei.j Pr + -R-.~" (45) 

26 t~P 
A = Crp, V; ~x (46) 

where A is the parameter of the longitudinal pressure 
gradient, Rei,j = (pVy)w6/p, the Reynolds number 
based on the permeability parameters 

Zh = St pcV,(hw_h,  ) - ~  - p , - ~  ] 

the parameter of the thermal unsteady state. 

3. D ISCUSSION OF RESULTS 

The closed systems of  equations obtained, which 
describe the unsteady heat transfer and friction of a 
turbulent gas flow in a channel of plane, annular or 
circular cross-section, were realized as a FORTRAN 
program for an EC electronic computer. The accuracy 
of the mathematical model and its numerical real- 
ization were estimated by comparing the predicted 
and experimental data obtained by different authors. 
Some of  the results of  this comparison are given 
below. The calculated results for the hydrodynamics 
and heat transfer parameters of an isothermal air flow 
in a tube are presented in Figs. 1-4. The flow in the 
initial section of the tube is often compared with the 
flow on a plate. In fact, the dynamic and thermal 
boundary layers start to develop downstream from 
the tube entrance and, in the first approximation, the 
calculation of friction and heat transfer can be made 



1052 A.I .  LEONTtm/ et al. 

G 4 9 r ,  , , , - , 9  
8106  2 4 S 8 1  

Re x 

FIG. I. Friction factor over the initial tube section: 
prediction; O ,  Cr = 0.576Re2 "°'2 ; A, Cf = 0.592Re~ ° ' ' .  

by relations obtained for a plate. However, there is 
also one distinctive feature--the presence of  the 
adverse pressure gradient. Velocity in the flow core 
does not remain constant due to the thickening of  
the boundary layers. The behaviour of  the maximum 
velocity on the tube axis along its length with respect 
to the velocity at the tube is depicted in Fig. 4. The 
velocity on the axis increases to about 1.3 of  the inlet 
velocity and then remains constant. It was shown in 
ref. [5] that at the instant of  the convergence of  
dynamic boundary layers the maximum velocity 
should comprise about !.24 of the inlet value. Accord- 
ing to the estimates [5, 6], the hydrodynamic length 
amounts to about 18S-20S. As is seen from Fig. 4, 
the predicted length of  the initial section is equal to 
22S which is close to that obtained experimentally. It 
should be noted that in the initial section of the tube 
there is actually the zone of laminar flow the length 
of which depends on the Reynolds number Red = 
VrS, q/vr at the inlet [6]. Due to the flow acceler- 
ation, the friction factor in the initial section of the 
tube is higher than that for the plate [2]. It is seen 
from Fig. 1 that the predicted value of  Cr is higher 
than that obtained experimentally in refs. [2, 5]. As 
to the heat transfer coefficient, a weaker effect of 
flow acceleration on it can be noted. In Fig. 2 the pre- 
dicted and experimental values of the heat transfer 
coefficients are given, with the temperature on the axis 
being taken as dominating. It can be noted that the 
predicted values lie somewhat above the experimental 
data of ref. [2]. On the other hand, these very pre- 

10 3 

6 

I I i I 

10 s ~ ¼ 6 ~ 10 e 

Ro x 

FIG. 2. Heat transfer over the initial section of the tube : 
prediction; C), Nux = 0.0289Re °'' Pr °' .  

t0 ~ 8// 
6 

4 

2 

A 

I I i a 

81~ ~ 4 ~ 810  
Refx 

FIG. 3. Heat transfer over the initial section of the tube: 
prediction; A ,  Nu~., = 0.021Re°;~ 8 Pr °''~ (.~:/d~°J(PrdPr,)°z~i 

diction results, processed using the mean-mass tem- 
perature (Fig. 3), lie below those given by the well- 
known Mikheyev equation [7]. 

The thermal initial section for gases is somewhat 
shorter than the dynamic one. The information about 
its length is very inconsistent, but, as the authors of 
ref. [2] deduce from the generalization of  many works, 
this value is close to 15S. In ref. [6] this value is given 
to be equal to 20S-30S .  It should be noted here that 
the length of  the thermal initial section depends 
strongly on the flow conditions. Calculations made 
for a small non-isothermicity factor give the initial 
thermal length to be equal to about 16S in conformity 
with the data of  ref. [2]. 

Figures 5 and 6 present the results of calculations 
for a plane channel. The behaviour of  the friction 
factor Cr in Fig. 5 is the same as in the tube inlet 
section, with the plot for a plate being located some- 
what below. The predicted heat transfer coefficient 
(Fig. 6) coincides with that obtained experimentally 
in ref. [2]. The same calculated results but processed 
with the aid of Mikheyev's equation (Fig. 7) are some- 
what overstated. 

The computed results processed on the basis of  the 
equivalent diameter Nud = ~cl~q/). are given in Fig. 8. 
Also presented are the experimental data of  refs. [8, 
9]. It is seen that the length of  the initial thermal 
section is equal to about 20S. The coincidence between 
the predicted and experimental values can be con- 
sidered satisfactory. 

1.6 

~° 11.4I ~ i . ~ , f f L  I "  
~e 1.2 

| i 

"~0 5 10 15 20 25 30 

x /d  

FIG. 4. Variation of the maximum velocity along the tube 
length. 
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11 X 

FxG. 5. Friction in the inlet section o f  a plane channel  : , 1 ' ~ 4 8 S 10 6 
prediction; - - - - ,  Cf = 0.576Rex °2. 6 10 6 

R o f  x 

FIG. 9. Heat transfer in a plane channel : - - ,  predict ion ; 
O ,  Nufx = 0.21Re°~ 8 Pr T M  (.',:/~°'2(PrdPr,)°2~. 

/ "SI  o o 

6J ~ 0 

R e x . f i  e V e x 

8 10" 6 2 4 6 e 106 
FIG. 6. Heat  transfer in the inlet section o f  a plane chan- 

nel: - - ,  prediction ; O ,  Nu~ -- 0.0128Re. T M  Pr °'4. 

10: j 
• l t 0 m i i t 
6 8 1 0  s 2 4 5 ~ 8 1 - 0 6  

R e ~  

FIG. 7. Heat  transfer in the inlet of  a plane channel :  - -  
prediction; O ,  Nufx = 0.021Re°i s Pr °43 (x[d)°2(PrdPr,,)°2sl 

R e  x 

FIG. 10. Heat  transfer in a plane channel : 
O,  Nux ffi 0.0218Re °'s~ Pr °'4. 

, prediction ; 

160 

A 0 
, , 0  

. ~ ~ o 

4C 

o' 1'. ~o 

o 8 8 

I I 
3O 4O 

x /~  

FIG. I 1. Heat transfer in a plane channel : 
A ,  + ,  O ,  refs. [2, 5, 6]. 

I 
5O 6O 

, prediction ; 

IIo 

10 2 

deq " 2 5  

I I I i I I I 
0 10 20 30 40 50 60 70 

X/S 

FIG. 8. Heat transfer in a plane channel :  , prediction ; 
+ ,  ref. [8] ; O ,  ref. [9]. 

0.06 

0.04 

0.02 

I I I I I 
10 20 30 4O 50 60 

x /S  

FIG. 12. Resistance coefficient in a plane channel :  - -  
prediction ; A ,  ref. [2] ; O ,  refs. [5, 6]. 
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300 

15C 

1GO 
'500 

0 0 ~ 0 ~ 

i i i I 
1000 1500 2000 2500 3000 

x (mm) 

FIG. 13. Heat transfer on the inner wall 0fan annular channel 
in the case of asymmetric heat transfer: , prediction ; C), 

ref. [11]. 

Figures 9-12 present the results of  calculations of  
heat transfer and friction in a plane channel at sub- 
stantial non-isothermicity factors (I> 2). In Fig. 9 the 
results ofcalculations are processed by the mean-mass 
flow temperature and include both the initial section 
and the section after the convergence of  the boundary 
layers. The computational relation almost coincides 
with Mikheyev's equation [7]. In Fig. 10, the results 
of calculations are compared with the data of  ref. [2]. 
Over the initial section the latter data lie somewhat 
higher than the former, but become closer after the 
convergence of the boundary layers. It should be 
noted here that the experimental relation was ob- 
tained by the authors of ref. [2] only for the entry sec- 
tion and it does not include the effect of the non-iso- 
thermicity factor on the heat transfer coefficient. At  
the same time, the relation suggested in ref. [7], with 
which the comparison is made in Fig. 9, takes into 
account the effect of  the temperature factor. Figure 
11 presents the results of  calculations processed 
by the equivalent diameter and the experimental data 
of refs. [5, 8-10]. It should be noted that the exper- 
imental data of  refs. [8-10] were mainly obtained for 
the section after the convergence of  the boundary 
layers and, moreover, for the case of  gas cooling, 
with correcting factors being introduced for the inlet 
section. Figure 12 shows the behaviour of  the resist- 
ance factor ~ along the channel length. For  the initial 
section, the experimental data of  ref. [2] for a tube 
converted into the equivalent diameter are given for 
comparison and for the section after the convergence 
of the boundary layers the experimental data of refs. 
[5, 6] are presented also converted into the equivalent 
diameter. In the initial section the deviation of  the 

predicted relations from those obtained exper- 
imentally is observed. However, the authors of  ref. 
[6] indicate that when extending the results of  the 
experiments carded out under non-isothermal flow 
conditions to the isothermal case, it is necessary to 
introduce correction in the form of the non-iso- 
thermicity factor raised to a certain power. In ref. [2] 
such a correction was not made and this explains the 
discrepancy between the computed and experimental 
data. The comparison of the results of  calculation of  
asymmetric heat transfer in an annular channel with 
the experimental data of  ref. [I 1] is given in Fig. 13. 
As is seen from the comparative analysis of  the pre- 
dicted and experimental data, the developed mathe- 
matical model adequately describes the turbulent 
heat transfer and friction in gas flows through chan- 
nels of  different cross-sections. 
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TRANSFERT THERMIQUE ET FROTTEMENT POUR UN ECOULEMENT 
TURBULENT DE GAZ DANS DES CANAUX AVEC DIFFERENTES SECTIONS 

DROITES 

R~sum6--On consid~r¢ des 6coulcments de gaz dans des canaux avec sections droites circulaires, annulaires 
ou rectangulaircs. Un mod~le math~matique est propos6 qui utilise une approche int~grale pour d6crire 
les transferts de quantit~ de mouvement et d'6nergie dam une couche limite turbulente. On suppose que 
les couches limites dynamiques et thermiques se d6veloppment simultan~ment sur les patois du canal pour 

converger. 
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WgRMEOBERGANG UND DRUCKABFALL IN EINER TURBULENTEN 
GASSTROMUNG IN KAN~i.LEN VON UNTERSCHIEDLICHER QUERSCHNITI'SFORM 

Zusammenfasmng--Die Gasstr6mung in Kan.~len yon kreisf'6rmigem, kreisringf'6rmigem und recht- 
eckigem Querschnitt wird betrachtet. Es wird ein mathematisches Modell vorgeschlagen, in dem ffir die 
Beschreibung des Impuls- und Energietransports in einer turbulenten Grenzschicbt ein Integralansatz 
verwendet wird. Es wird angenommen, dab sich die hydrodynamische und die thermiscbe Grenzschicht 

an der Kanalwand gleichzeitig zu entwickeln beginnen und nacb und nach zusammenwachsen. 

TEIUIOOEMEH H TPEHHE flPH TYPEY2IEHTHOM TEqEHHH FA3A B KAHAJIAX 
PA3JIHqHOFO CEqEHH~I 

~ a m l ~ - - P a c c M a T p m m e T c M  T~IeliHe Fa.~. B KaH~JISX I~FJIOFO xo.rlblleBoro H IlffOCKOFO CCqCHHn. 
l'Ip~lLflaFaeMaJl MflTeMaTHqecEaJi MOIICJII, Hcno~s3ycr HHTCFpaJIbHM~[ no~xo] l  ~JDI onI4CaHHX npOIlCCCOB 
nepeHoca  HMnynbc:oa 14 3HcprI4H S ' I '~yJIeI4THOM Hoi~aHHqHOM C21OC. I'lpc,llrlo.,'laFacTc~, qTO am4aMIt- 
qCCKH~ H TcnJIOBOH noFpaHHqHl~le C..JIOH HaqHHLV.OT HapacTaTb Ha CTeHKa,~ KaHa21a O~[HOBI~MeHHO H B 

,~'lbHeillllleM CMIb~alOTCg. 


